THE UNUSUAL CYCLIZATION OF BENZIL

MONOHYDRAZONES TO 4,5-DIPHENYLIMIDAZOLES

Villiam L. Collibee and Jean-Pierre Anselme*

Department of Chemistry University of Massachusetts at Boston, Harbor Campus, Boston, MA 02125

SUMMARY Benzil monodisubstituted hydrazones (2) have been shown to undergo cuclodehydration to the corresponding imidazoles (10) and not to pyrazoles as previously reported.

As a part of our investigation of the action of sodium hydroxide upon 1,1-dimethy1-1phenacylhydrazinium bromide,¹ we attempted to prepare the <u>mono</u>dimethylhydrazone of benzoin by the action of 1,1-dimethylhydrazine on benzoin. However, the product isolated, mp. 158-159°, was devoid of oxygen and corresponded to the formula $C_{16}H_{14}N_2$. Examination of the literature revealed that a Russian group had isolated a compound of similar mp. to which they had assigned the structure of 3,4-diphenyl-1-methylpyrazole (3).² Since the purported pyrazole was obtained from the cyclization of benzil monodimethylhydrazone (2a), it seemed reasonable that after initial oxidation of benzoin to benzil monoimine ($\underline{1}$) by 1,1-dimethylhydrazine, condensation of the latter with a second molecule of 1,1-dimethylhydrazine should lead to the hydrazone 2a

thence to the pyrazole as described by the Russian workers. Our desire to exploit this reaction as a facile, convenient and versatile route to pyrazoles led us to investigate its scope. 3 We now describe the startling preliminary results of this investigation.

The product of the cyclodehydration of benzil monodimethylhydrazone (a-form, mp. 99°) was prepared¹ and was shown to be identical to our product, mp. 158-159⁰, obtained from benzoin and 1,1-dimethylhydrazine.⁴ This result seemed to support the scheme shown in Eq. 1 and the

1595

successful cyclization of hydrazones 4 and 6 to the corresponding pyrazoles 5 and 7 (Scheme 1) initially appeared to be in complete accord with the results described above.² However, further exploration of this reaction using simple <u>monodialkylhydrazones</u> of benzil revealed that the cyclized products were not pyrazoles but instead the corresponding <u>imidazoles</u> (10). The products were identified as imidazoles by comparison of their spectral data, mps and the tlc behavior with those of authentic samples. An authentic <u>10a</u> was obtained from the methylation of 4,5-diphenylimidazole⁵ and authentic <u>10b</u> and <u>10c</u> were prepared by methylation and benzylation of lophine respectively;⁶ a literature procedure was followed for the obtention of authentic <u>10d</u>.⁷ An authentic sample of 3,4-diphenyl-1-methylpyrazole (3), mp. 58-61°, prepared by the cycloaddition of N-methylsydnone to tolan and by oxidation of 3,4-diphenyl-1-methyl-2pyrazoline, was totally different from 10a in every respect. While sufficient data is not yet

a) R = H, $R' = CH_3$ b) R = Ph, $R' = CH_3$ c) R = Ph, $R' = PhCH_2$ d) R = H, R' = Ph

available to permit the elaboration of a definite mechanism, it is clear that the N-N bond of the hydrazine is cleaved. It might be speculated that the reorganiation of the N-N-C to the N-C-N arrangement required by the imidazole structure of the products passes through a diaziridine intermediate (8) or through the four-membered ring ylid (9).

REFERENCES

- † Taken in part from the M. Sc. Thesis of W. L. Collibee, Univ. of Massachusetts at Boston, June 1985.
- 1. K. Kano and J.-P. Anselme, Bull. Chem. Soc. Japan, 57, 905 (1984).
- 2. N. A. Domnin, V. I. Diurnbaum and V. A. Cherkasova, J. Gen. Chem. USSR, 28, 1550 (1958).
- 3. W. L. Collibee, M. Sc. Thesis, University of Massachusetts at Boston.
- 4. Both the hydrazone <u>2a</u> and the compound, mp. 158-159°, now identified as 4,5-diphenyl-1methylimidazole gave correct elemental analyses.³
- 5. L. Hunter and J. A. Marriott, J. Chem. Soc., 777 (1941).
- 6. D. M. White and J. Sonnenberg, J. Org. Chem., 29, 1926 (1964).
- 7. A. Lespagnol et al., Chim. Ther., 66, 292 (1966); C. A., 67, 288 (1967).

(Received in USA 22 October 1984)